N-division output coding method applied to face recognition
نویسندگان
چکیده
Most research on face recognition has focused on representation of face appearances rather than the classifiers. For robust classification performance, we need to adopt elaborate classifiers. Output coding is suitable for this purpose because it can allow online learning. In this paper, we propose an N -division output coding method. In the experiments we demonstrate such properties as problem complexity, margin of separation, machine relevance and the recognition performance among different output coding methods. 2003 Elsevier B.V. All rights reserved.
منابع مشابه
Face Recognition using an Affine Sparse Coding approach
Sparse coding is an unsupervised method which learns a set of over-complete bases to represent data such as image and video. Sparse coding has increasing attraction for image classification applications in recent years. But in the cases where we have some similar images from different classes, such as face recognition applications, different images may be classified into the same class, and hen...
متن کاملEnsemble neural classifier design for face recognition
A method for tuning MLP learning parameters in an ensemble classifier framework is presented. No validation set or cross-validation technique is required to optimize parameters for generalisability. In this paper, the technique is applied to face recognition using Error-Correcting Output Coding strategy to solve multiclass problems.
متن کاملA new Sparse Coding Approach for Human Face and Action Recognition
Sparse coding is an unsupervised method which learns a set of over-complete bases to represent data such as image, video and etc. In the cases where we have some similar images from the different classes, using the sparse coding method the images may be classified into the same class and devalue classification performance. In this paper, we propose an Affine Graph Regularized Sparse Coding appr...
متن کاملEnsemble Approaches to Facial Action Unit Classification
Facial action unit (au) classification is an approach to face expression recognition that decouples the recognition of expression from individual actions. In this paper, upper face aus are classified using an ensemble of MLP (Multi-layer perceptron) base classifiers with feature ranking based on PCA components. This approach is compared experimentally with other popular feature-ranking methods ...
متن کاملFace Recognition using Eigenfaces , PCA and Supprot Vector Machines
This paper is based on a combination of the principal component analysis (PCA), eigenface and support vector machines. Using N-fold method and with respect to the value of N, any person’s face images are divided into two sections. As a result, vectors of training features and test features are obtain ed. Classification precision and accuracy was examined with three different types of kernel and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pattern Recognition Letters
دوره 24 شماره
صفحات -
تاریخ انتشار 2003